Muted environmental impacts of sulphur from massive eruptions
Nature Geoscience
2015년11월24일

The environmental impacts of sulphur dioxide released during flood basalt eruptions may be more limited than previously thought, reports a paper published online this week in Nature Geoscience.
Sulphur dioxide has been shown to lead to climatic cooling and acidification of the environment, including ‘acid rain’. During a flood basalt eruption, up to several million cubic kilometres of lava are released over a period of several hundred thousand years, along with volcanic gases such as sulphur dioxide. Many flood basalt eruptions coincide with mass extinction events, which has led to the suggestion that massive sulphur dioxide release may have contributed to the Cretaceous-Paleogene and end-Permian mass extinctions. However, recent research suggests that flood basalt eruptions-and hence sulphur dioxide release-could be intermittent, characterized by years to decades of activity followed by periods of inactivity.
Anja Schmidt and colleagues use numerical models to simulate the environmental impacts of such an intermittent sulphur dioxide release during two eruptions-the Deccan Traps in India (65 million years ago), and the Roza eruption (14.5-16.5 million years ago) that created the Columbia River basalts in the northwestern United States. They find that, although acidic sulphur-based compounds were deposited to soils and freshwater systems, most regions away from the eruption site were resistant to acidification and lasting damage. Furthermore, the climate recovered from cooling caused by the sulphur dioxide release within 50 years of the eruption ceasing. The authors conclude that only individual eruptions lasting centuries or more would have had widespread and lasting environmental impacts. They argue it is therefore unlikely that acidification from sulphur dioxide released during flood basalt eruptions contributed substantially to global-scale mass extinction.
doi: 10.1038/ngeo2588
리서치 하이라이트
-
3월4일
Environment: Reservoirs account for more than half of water storage variabilityNature
-
3월2일
Evolution: Neanderthals may have heard just like usNature Ecology & Evolution
-
3월2일
Geoscience: Earth’s atmosphere may return to low-levels of oxygen in one billion yearsNature Geoscience
-
2월26일
Environment: Shifting from small to medium plastic bottles could reduce PET wasteScientific Reports
-
2월24일
Environment: European forests more vulnerable to multiple threats as climate warmsNature Communications
-
2월11일
Environment: Global CFC-11 emissions in declineNature