Collecting stem cells by shear force
Nature Methods
2013년4월8일
The adhesion properties of human pluripotent stem cells (hPSCs) and how these properties can be exploited to separate hPSCs from other cells in a culture is described in a paper published this week in Nature Methods.
hPSCs, which are of interest for basic and applied research, are studied in many laboratories, but culture of these cells is difficult. hPSC cultures are notoriously dynamic and heterogeneous, whether due to spontaneous differentiation, to incomplete reprogramming or to the presence of added ‘feeder’ cells. Methods to isolate specific cells from heterogeneous cultures are therefore potentially valuable.
Andres Garcia and colleagues now conduct a systematic comparison of the adhesion properties of hPSCs, differentiated cells derived from them and somatic cells commonly used as donor cells for reprogramming. They report that hPSCs differ from other cell types with respect to the strength with which they cling to their culture surface.
The researchers then use fluid flow-controlled shear force, applied in a microfluidic device, to separate hPSCs from other cell types. They can even separate fully reprogrammed hPSCs from partially reprogrammed cells in this way. hPSCs isolated by shear force retain their ‘stem-like’ properties and show high viability as compared to other separation methods.
The authors conclude that adhesion-based isolation of hPSCs should prove a simple, label-free complement to isolation methods that require surface labeling of the cells.
doi: 10.1038/nmeth.2437
리서치 하이라이트
-
6월30일
Microbiology: Transmission of gastrointestinal viruses in salivaNature
-
6월29일
COVID-19: Assessing instances of long COVID in UK health dataNature Communications
-
6월24일
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
6월23일
Scientific community: Women credited less than men in scientific paper authorshipNature
-
6월17일
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
6월16일
An exercise-inducible molecule that suppresses appetiteNature