Anti-Aβ treatment aggravates abnormal brain activity in a mouse model of Alzheimer’s disease
Nature Neuroscience
2015년11월10일
Therapies that reduce deposits of amyloid-β (Aβ) in the brain are ineffective at repairing neuronal impairment in mice and actually increase it, finds a study published online in Nature Neuroscience. Aβ deposits aggregate into clumps in the brain which are a pathological hallmark of Alzheimer's disease.
Expression of mutant human amyloid protein in animals results in deposits of Aβ plaques that induce abnormal increases in neuronal activity and impair the normal function of neuronal circuits.
Arthur Konnerth, Marc Busche and colleagues explored whether they could reverse these impairments by treating mice that overexpress the human mutant amyloid precursor protein with either of two different antibodies targeting Aβ (14 mice) or a control antibody (19 mice). They found that, although treatment with the Aβ targeting antibodies reduced the amount of plaques in the animals' brains, it also increased the amount of hyperactive neurons.
This was true whether the treatment was given to older mice (14 treated, 19 control) or younger mice in which the accumulation of Aβ had yet to occur (10 treated, 13 control). The same therapies had no effect on neuronal activity in a group of normal mice (5 treated, 3 control), suggesting that the observed exacerbation in mutant mice is dependent on the presence of Aβ and cannot be explained by incidental effects of inflammation in response to the antibodies.
The authors note that, although other research has shown that anti-Aβ treatment can prevent the weakening of neuronal connections and memory impairments in animal models of Alzheimer's disease, these benefits are not enough to repair neuronal dysfunction.
They suggest that their findings provide a cellular mechanism that may explain, in part, why treatments targeting Aβ in human clinical trials have failed to improve cognitive deficits. However, the authors point out that future studies are needed to determine whether the increase in abnormal neural activity seen in their animal models is related to the poor efficacy of Aβ therapy in patients.
doi: 10.1038/nn.4163
리서치 하이라이트
-
6월24일
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
6월23일
Scientific community: Women credited less than men in scientific paper authorshipNature
-
6월17일
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
6월16일
An exercise-inducible molecule that suppresses appetiteNature
-
6월16일
Cancer: Signatures of structural genomic variation in cancerNature
-
6월10일
Animals: Genetic clues to how dogs became man’s best friendsScientific Reports