Astronomy: When solar eruptions collide
Nature Communications
2014년3월19일
Observations of an extreme space weather storm caused by two successive solar eruptions are reported in Nature Communications this week. The findings may help understand how such incidents are caused by combinations of events.
Coronal mass ejections are large-scale eruptions of plasma and magnetic field from the outer layer of the Sun. They are known to be a major influence on space weather, which can affect spacecraft and satellites around the Earth. Most coronal mass ejections have effects that are equivalent to the normal solar wind by the time they reach us, but how they evolve as they travel from the Sun is not clearly understood. Ying Liu and colleagues use multi-point sensing satellites to study the rare case of two consecutive eruptions on 23 July 2012. This situation resulted in an extreme storm with a high solar wind speed and magnetic field at around Earth radius. Their observations show how the two coronal mass ejections interact as they travel, producing a change in direction of propagation, an enhancement of their magnetic field, and only a modest slowing of their speed. The study suggests that current modelling of solar wind speed and magnetic field may be underestimated if such interactions are not properly accounted for.
doi: 10.1038/ncomms4481
리서치 하이라이트
-
7월7일
Public health: Tackling adolescent stressNature
-
6월23일
Scientific community: Women credited less than men in scientific paper authorshipNature
-
5월12일
Geoscience: Monitoring earthquakes at the speed of lightNature
-
5월4일
Microbiology: Bacteriophage therapy helps treat multi-drug resistant infection in an immunocompromised patientNature Communications
-
4월27일
Planetary science: Building blocks of DNA detected in meteoritesNature Communications
-
4월8일
Health: Psilocybin use associated with lower risk of opioid addictionScientific Reports