Research Press Release

Nanoscale switches by rearrangement of single atoms

Nature Nanotechnology

September 2, 2013

Conductance switching can be achieved by the displacement of single atoms in a reliable and fatigue-resistant two-terminal atomic switch - a nanoscale version of a transistor - reports a study published online this week in Nature Nanotechnology.

Miniaturization of electronic components to the nanoscale is driven by the need for faster, cheaper, less-power-consuming devices. In atomic-scale switches, the change in electrical conductance from the on to the off state relies on the control of the atomic configuration in a metal wire made up of a small number of atoms.

Elke Scheer and colleagues have created a switch that is made from an atomic-size aluminium contact that is located in the centre of a constriction fabricated in an aluminium wire. By passing high current through the constriction, single atoms are displaced by a phenomenon called electromigration, which changes the ability of the constriction to allow electrical current to pass through. The authors show a reproducible and reversible toggling of the conductance between two well-defined values due to the rearrangement of single atoms induced by electromigration. They also demonstrate the ability of the atomic switch to operate as a non-volatile memory device, showing that the switch can store one bit of information in its atomic configuration, which is written and read by means of an electrical current.


Return to research highlights

PrivacyMark System