Reprogramming cells by placing them on grooves
Nature Materials
October 21, 2013
Surfaces with aligned features, such as microgrooves, can induce the reprogramming of non-germ cells into an embryonic-like state from which they can become any cell type, reports a study published online this week in Nature Materials. Such surface-mediated regulation of cell reprogramming offers ways to improve reprogramming efficiency, advance stem-cell technologies and optimize biomaterials for cell-engineering applications.
Reprogramming somatic, or non-germ, cells into induced pluripotent stem cells is routinely accomplished by using a cocktail of small molecules that induce the expression of a few proteins that control the transcription of pluripotency genes.
Song Li and colleagues demonstrate that reprogramming can be achieved more efficiently by culturing the cells on cell-adhesive substrates with aligned microgrooves or nanofibres, and that these can substitute for the effects of potent small-molecule modifiers of gene expression. The researchers also show that the micro- and nanopatterned substrates increase the expression of pluripotency genes by inducing the cells to acquire an elongated shape, which in turn alters the levels of specific chemical markers in DNA-packaging proteins.
doi: 10.1038/nmat3777
Research highlights
-
Jul 1
Space health: The path of most resistance could help limit bone loss during spaceflightScientific Reports
-
Jun 30
Evolution: Hawks learn on the fly to swoop up before perchingNature
-
Jun 28
Astronomy: Hydrogen- and helium-rich exoplanets may provide habitable conditions for billions of yearsNature Astronomy
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 22
Planetary science: Modelling electrolyte transport in water-rich exoplanetsNature Communications