Materials: Bio-inspired super-elastic graphene
Nature Communications
December 5, 2012
A strategy for making three-dimensional graphene networks is reported in Nature Communications this week. These graphene ‘monoliths’ exhibit ultralow density, super-elasticity with an extremely high recovery rate, and electrical conductivity and they may pave the way for new types of graphene-based flexible devices.
The development of graphene as a functional material requires that multiple sheets can be assembled while maintaining the unique properties of single sheets. Dan Li and his colleagues use a combination of graphene chemistry and ice physics to freeze cast the graphene monoliths, which have a structure similar to that of natural cork. The new material can support more than 50,000 times its own weight and can recover from 80% compression.
The authors suggest that functional materials can be incorporated into the voids in the material, offering plenty of room to fabricate new graphene-based nanocomposites.
doi: 10.1038/ncomms2251
Research highlights
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 22
Planetary science: Modelling electrolyte transport in water-rich exoplanetsNature Communications
-
Jun 15
Robotics: Taking millimetre-scale origami robots for a spinNature Communications
-
Jun 9
Astrophysics: A new repeating fast radio burstNature
-
Jun 2
Quantum computing: Photonic processor lights up the route to quantum computingNature