Optomechanics: Coupling near the quantum limit
Nature Communications
August 8, 2012
The coupling of three components an optomechanical system operating close to its quantum ground state is shown in Nature Communications this week. The findings are an important demonstration of control for potential quantum technology.
Understanding the quantum behaviour of macroscopic objects is crucial to explaining the transition between classical and quantum phenomena on small length scales. It is also key to developing quantum technologies. Mika Sillanpaa and colleagues investigate the response of a system comprising two micromechanical beams and an optical cavity, working in a regime close to the quantum mechanical ground state of the beams. They find a coupling between the structural vibrations of the beams and the light cavity, providing the first evidence of tripartite mixing in such a system. This implies that the fundamental behaviour arises from combinations of mechanical vibrations and light oscillations, with no component being independent from the others. Exploiting the radiation pressure from the cavity, the whole system is cooled to operate in a nearly pure quantum state.
These observations demonstrate a possible chip-scale platform for studying non-classical states, which may form a basis for quantum technology including data storage.
doi: 10.1038/ncomms1993
Research highlights
-
Jun 30
Evolution: Hawks learn on the fly to swoop up before perchingNature
-
Jun 28
Astronomy: Hydrogen- and helium-rich exoplanets may provide habitable conditions for billions of yearsNature Astronomy
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 22
Planetary science: Modelling electrolyte transport in water-rich exoplanetsNature Communications
-
Jun 15
Robotics: Taking millimetre-scale origami robots for a spinNature Communications