Electrical engineering: Self-powered wearable tech flexes its muscles
Nature
September 27, 2018
A wearable, self-powered cardiac sensor capable of stable operation when being flexed is reported in a study published in this week’s Nature.
Self-powered, flexible electronics that can be worn on the skin could open up a new generation of biomedical devices to track various physiological signals, such as heartbeats. There is a need, however, to develop methods of energizing these technologies that does not rely on rigid power sources or wire connectors. While devices run off of flexible solar power cells have been realized in idealized, static settings, existing setups have proved unable to deliver a consistent power supply when subjected to the kind of flexing that would need to be endured when worn on an individual’s moving skin.
Takao Someya and colleagues present a thin, ultra-flexible, solar-powered device capable of measuring biometric signals accurately. The device is made up of an organic solar cell and an electrochemical transistor sensor, embedded onto a one-micrometre-thick bendable surface. By moulding a nanoscale grating pattern into the solar cells to increase light absorption, the authors were able to achieve high power conversion efficiency. They demonstrate their device operating as a cardiac sensor both on human skin and on the surface of a rat’s heart.
The authors conclude that this system could provide a template for developing various other types of self-powered flexible electronics.
doi: 10.1038/s41586-018-0536-x
Research highlights
-
Jul 1
Space health: The path of most resistance could help limit bone loss during spaceflightScientific Reports
-
Jun 30
Evolution: Hawks learn on the fly to swoop up before perchingNature
-
Jun 28
Astronomy: Hydrogen- and helium-rich exoplanets may provide habitable conditions for billions of yearsNature Astronomy
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 22
Planetary science: Modelling electrolyte transport in water-rich exoplanetsNature Communications