Ingestible electronic capsules sense gut gases
Nature Electronics
January 9, 2018
Ingestible electronic capsules that can sense different gases in the gut, and can distinguish changes in a person’s diet, are reported in a paper published online this week in Nature Electronics. The devices could potentially be used to help understand the effects of diet and medical supplements, and to help develop individualized diets.
Ingestible sensors are an emerging technology that could play a powerful role in the monitoring of human health, but the capabilities of the devices are currently relatively limited.
Kourosh Kalantar-Zadeh and colleagues have developed small ingestible capsules that contain gas sensors, a temperature sensor, a small computer (microcontroller), a radio-frequency transmitter, and batteries. In a small human pilot trial (six healthy volunteers), the sensors are shown to be capable of sensing oxygen, hydrogen, and carbon dioxide as the device travels the length of the gut, transmitting the gas concentration data to a pocket-sized receiver carried by the volunteers. The gas concentration profiles reflect, in particular, the gases produced by the microbial community of the gut during food fermentation and could be used to distinguish volunteers on high- and low-fibre diets.
The results also highlighted that the electronic capsules are capable of detecting the different fermentation patterns of individuals, which suggests that the sensors could be used to monitor a person’s response to a custom diet.
doi: 10.1038/s41928-017-0004-x
Research highlights
-
Jul 1
Space health: The path of most resistance could help limit bone loss during spaceflightScientific Reports
-
Jun 30
Evolution: Hawks learn on the fly to swoop up before perchingNature
-
Jun 28
Astronomy: Hydrogen- and helium-rich exoplanets may provide habitable conditions for billions of yearsNature Astronomy
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 22
Planetary science: Modelling electrolyte transport in water-rich exoplanetsNature Communications