Astronomy: New theories about Pluto’s icy heart
Nature
November 17, 2016
The origins of Sputnik Planitia, a 1,000-kilometre-wide basin within the heart-shaped region observed on Pluto’s surface, are described in two separate studies published online in Nature this week. The studies suggest that as this basin filled with ice, it made the dwarf planet roll over, creating cracks and tensions in the crust that point towards the presence of a subsurface ocean.
James Keane and co-authors propose that the current location of Sputnik Planitia was determined by tidal forces. They posit that as the basin filled with ice, it altered the tidal interactions between Pluto and Charon, causing reorientation of the dwarf planet. Their models show that this reorientation put stress on the crust, producing a network of faults that created canyons and mountains.
Francis Nimmo and colleagues also consider the implications of Pluto’s apparent reorientation. They agree that tidal forces could explain the current location of Sputnik Planitia, but suggest that these processes would require the presence of an ocean beneath Pluto’s surface.
Together, these studies provide new insights into what shaped Pluto’s heart, and how it shaped the dwarf planet.
doi: 10.1038/nature20120
Research highlights
-
Jul 6
Biotechnology: Mice cloned from freeze-dried somatic cellsNature Communications
-
Jul 4
Particle physics: A decade of Higgs boson researchNature
-
Jul 1
Space health: The path of most resistance could help limit bone loss during spaceflightScientific Reports
-
Jun 30
Evolution: Hawks learn on the fly to swoop up before perchingNature
-
Jun 28
Astronomy: Hydrogen- and helium-rich exoplanets may provide habitable conditions for billions of yearsNature Astronomy
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports