Nature Hot Topic

Functionalization of unactivated C–H bonds

Organic synthesis has traditionally relied heavily on the introduction and manipulation of functional groups, such as carbon–oxygen or carbon–halogen bonds. Much current research is focused on a potentially powerful alternative strategy in which carbon–hydrogen bonds, normally much less reactive and therefore resistant to functionalization, are somehow persuaded to be more easily modified. These authors report that it is possible to selectively functionalize an unactivated C–H bond by the use of well-defined catalysts to control the site selectivity, without the need for a directing or anchoring group present in the molecule. They use dirhodium catalysts to achieve diastereoselective and enantioselective C–H functionalization of n-alkanes and terminally substituted n-alkyl compounds. The reactions proceed in high yield and can be carried out on substrates containing other functional groups such as halides, silanes, and esters.

Nature 533, 7602 table of contents

Top Ten Highlights

Sign up for Nature Research e-alerts to get the lastest research in your inbox every week.

More Hot Topics

PrivacyMark System