Fresh lead for broad-spectrum Huntington's therapy
Nature Biotechnology
May 4, 2009
New findings may catalyze the development of drugs to treat Huntington's and other similar diseases, reports a study published online this week in Nature Biotechnology.
We all carry two slightly different copies of most of our genes. Huntington's disease, a severe neurological disorder, results when a sequence of three bases, CAG, in one of the two copies of the huntingtin (HTT) gene is repeated more than 36 times. The challenge in finding a cure is to silence the defective "stuttering" HTT without switching off the normal copy. So far, research into silencing mutant HTT relied on targeting specific mutations outside the repeats. But these strategies would not help patients with rare HTT mutations.
David Corey and colleagues show that an engineered RNA can discriminate between mutant and normal HTT on the basis of the repeated CAG sequence itself. They selectively target the mutant gene even in patient cells without the variants most commonly associated with Huntington's. Although more remains to be learned about the mechanisms involved and how well the treatment works in animals, the findings provide a new starting point for developing drugs that may eventually benefit all Huntington's patients.
doi: 10.1038/nbt.1539
Research highlights
-
Aug 12
Ageing: Mutations in the ageing human heart identifiedNature Aging
-
Aug 12
Palaeontology: T. rex and relatives traded big eyes for bigger bitesCommunications Biology
-
Aug 10
Epidemiology: Estimating the risk of SARS-related coronaviruses from bats in Southeast AsiaNature Communications
-
Aug 5
Microbiology: Single switch makes Escherichia coli beneficial insect partnerNature Microbiology
-
Aug 5
Conservation: More than half of unassessable species may be at risk of extinctionCommunications Biology
-
Aug 4
Physiology: Restoring cellular functions in pigs after deathNature