Imaging genes in single cells
Nature Methods
October 7, 2013

An automated method to measure the expression of genes in thousands of single human cells is reported this week in Nature Methods. The method scales up a technique known as single-molecule fluorescence in situ hybridization (smFISH) and determines where RNA transcripts are located in the cell, providing important clues about their biological function.
smFISH can be used to detect specific RNA sequences in a cell based on their binding to a fluorescent probe, but imaging the ‘dots’ corresponding to each RNA molecule requires high magnification and delicate imaging settings. Lucas Pelkmans and colleagues use much brighter probes, allowing them to perform rapid and robust low-magnification imaging of many more cells, quantify low-level expression accurately and also query very short RNA transcripts. Their software tools automatically outline cells and nuclei, count dots to quantify expression and exhaustively document where transcripts are located in the cell. Results from studies with human cells showed highly reproducible expression levels, comparable with those determined by high-throughput RNA sequencing (RNA-seq).
The authors highlight the importance of measuring the variability of transcript expression and location in so many cells by using their data to discover genes with related functions in the cell.
doi:10.1038/nmeth.2657
Research highlights
-
Jan 22
Palaeontology: Fossil burrows point to colonization of ancient seafloor by giant marine wormsScientific Reports
-
Jan 21
Climate change: Lake heatwaves likely to increase by 2100Nature
-
Jan 21
Neuroscience: Cognitive decline eased by boosting macrophage metabolismNature
-
Jan 21
Sociology: Hiring discrimination against individuals from minority ethnic groups in SwitzerlandNature
-
Jan 19
Neuroscience: Non-invasive, personalized brain stimulation may reduce obsessive–compulsive behavioursNature Medicine
-
Jan 15
Environment: Seagrass meadows may facilitate marine plastic removal from the seaScientific Reports