A diffuse core in Saturn revealed by ring seismology
Nature Astronomy
August 17, 2021
Oscillations of Saturn’s rings provide insight into the structure of the planet’s interior, according to a paper published in Nature Astronomy. Cassini spacecraft data reveal that Saturn possesses a fuzzy or diffuse core without clearly defined boundaries, which has subsequently constrained the planet’s formation and evolution.
The internal structure of giant planets is usually determined by inspecting the detailed configuration of their gravitational field, observed by a spacecraft orbiting them. However, the perturbations induced on a planet’s gravitational field by its most central part, its core, are quite weak, and as such limit the precision to which the internal structure can be defined.
Christopher Mankovich and Jim Fuller studied the gas giant Saturn, which is usually assumed to have a metallic core surrounded by an envelope composed mostly of hydrogen and helium. By incorporating gravity data with seismic measurements from Saturn’s rings, the authors are able to provide novel insight into the structure of the planet’s interior. They find that the core extends to about 60% of the planet’s radius — substantially more than previous estimates — and is composed of a diffuse mixture of hydrogen and helium combined with heavy elements, as opposed to the core and the envelope being clearly separated.
Determining how Saturn’s internal structure developed is a challenge for standard planetary formation models, and provides important constraints as to its mass accretion history, the authors conclude.
doi:10.1038/s41550-021-01448-3
Research highlights
-
May 17
Geoscience: Biological soil crusts reduce dust blowing in the windNature Geoscience
-
May 13
Space Biology: One small step towards plants on the MoonCommunications Biology
-
May 12
Ageing: Cerebrospinal fluid from young mice improves memory in old miceNature
-
May 12
Geoscience: Monitoring earthquakes at the speed of lightNature
-
May 11
Epidemiology: Seasonal H1N1 flu may be descended from 1918 pandemic strainNature Communications
-
May 11
Physics: Modelling how birds regulate speed within a flockNature Communications