Machine learning: An algorithm designed to smell
Nature Machine Intelligence
March 17, 2020
A neural algorithm designed to mimic the biological perception of smell is reported in a paper published in Nature Machine Intelligence. These findings may support a future application in which an artificial nose can be trained to recognize specific odours, despite the presence of unknown background odours.
Neuromorphic chips are designed to use computational machinery inspired by the brain, namely by creating networks that consist of artificial neurons and synapses. However, it is unclear how to use that machinery in real-world practical problems. This is largely due to our incomplete understanding of algorithms implemented at the level of biological neural circuits.
Nabil Imam and Thomas Cleland describe a neural algorithm for the learning and identification of odour samples based on the architecture of the mammalian olfactory system. The neural algorithm was then implemented into a neuromorphic system, where it was trained on scents - such as toluene, ammonia, acetone, carbon monoxide and methane - and tested on data from sensors in a wind tunnel.
These results reveal computational features for understanding mammalian olfaction, as well as for improving the performance of artificial chemosensory systems. The findings also suggest that the adaptation of such biological neural systems could represent a powerful method to develop new algorithms that go beyond current trends in artificial intelligence.
doi:10.1038/s42256-020-0159-4
Research highlights
-
May 17
Geoscience: Biological soil crusts reduce dust blowing in the windNature Geoscience
-
May 13
Space Biology: One small step towards plants on the MoonCommunications Biology
-
May 12
Ageing: Cerebrospinal fluid from young mice improves memory in old miceNature
-
May 12
Geoscience: Monitoring earthquakes at the speed of lightNature
-
May 11
Epidemiology: Seasonal H1N1 flu may be descended from 1918 pandemic strainNature Communications
-
May 11
Physics: Modelling how birds regulate speed within a flockNature Communications