Physical sciences: 3D imaging in tissues
Communications Physics
February 23, 2018

An experimentally straightforward ultrasound-based method to produce 3D images of cancerous tumours, demonstrated in mice, is presented this week in Communications Physics, a new selective, open access journal from Nature Research. The technique produces high-resolution 3D-maps of tumours, called photoacoustic images, and avoids the need for complex computational processes.
Jan Laufer and colleagues introduce a reporter gene into cancerous cells, which produces a protein called AGP1 that absorbs light in the near-infrared region of the electromagnetic spectrum. Firing a laser at these modified cancer cells causes them to produce laser-generated ultrasound waves which are then used to build up a 3D image of the tissue, using a dual-wavelength detection method. Using this system the authors are able to achieve greater sensitivity than previously possible in deep tissue imaging.
The authors suggest that this technique can be adapted to a range of photoacoustic imaging systems and that it will not only help in the detection of cancerous tumours, but also our ability to analyse the inner workings of cellular and genetic processes in living organisms.
doi:10.1038/s42005-017-0003-2
Research highlights
-
Jan 22
Palaeontology: Fossil burrows point to colonization of ancient seafloor by giant marine wormsScientific Reports
-
Jan 21
Climate change: Lake heatwaves likely to increase by 2100Nature
-
Jan 21
Neuroscience: Cognitive decline eased by boosting macrophage metabolismNature
-
Jan 21
Sociology: Hiring discrimination against individuals from minority ethnic groups in SwitzerlandNature
-
Jan 19
Neuroscience: Non-invasive, personalized brain stimulation may reduce obsessive–compulsive behavioursNature Medicine
-
Jan 15
Environment: Seagrass meadows may facilitate marine plastic removal from the seaScientific Reports