Physical sciences: 3D imaging in tissues
Communications Physics
February 23, 2018
An experimentally straightforward ultrasound-based method to produce 3D images of cancerous tumours, demonstrated in mice, is presented this week in Communications Physics, a new selective, open access journal from Nature Research. The technique produces high-resolution 3D-maps of tumours, called photoacoustic images, and avoids the need for complex computational processes.
Jan Laufer and colleagues introduce a reporter gene into cancerous cells, which produces a protein called AGP1 that absorbs light in the near-infrared region of the electromagnetic spectrum. Firing a laser at these modified cancer cells causes them to produce laser-generated ultrasound waves which are then used to build up a 3D image of the tissue, using a dual-wavelength detection method. Using this system the authors are able to achieve greater sensitivity than previously possible in deep tissue imaging.
The authors suggest that this technique can be adapted to a range of photoacoustic imaging systems and that it will not only help in the detection of cancerous tumours, but also our ability to analyse the inner workings of cellular and genetic processes in living organisms.
doi:10.1038/s42005-017-0003-2
Research highlights
-
Jun 24
Environment: Assessing the impacts of US school lunches on climate, land and waterCommunications Earth & Environment
-
Jun 24
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 22
Planetary science: Modelling electrolyte transport in water-rich exoplanetsNature Communications
-
Jun 21
Materials: Low-cost sustainable food packaging keeps avocados fresh for longerNature Food