Research Press Release

Physical sciences: Human travellers split between returners and explorersAdd to my bookmarks

Nature Communications

September 9, 2015

The analysis of extensive datasets on human mobility patterns reveals the existence of two distinct classes of individual travel behaviour, returners and explorers, reports a study published in Nature Communications. This observation allows the creation of a new model of mobility which may help contain the spread of epidemics.

Variability in human movement is accompanied by a relatively high degree of statistical predictability of global patterns at the population level. The increasing availability of tracking datasets has now made it possible to develop and verify quantitative mobility models.

Albert-Laszlo Barabasi and colleagues analysed an anonymized dataset composed of 67,000 individuals’ call records over a three-month period, and compared it with the GPS traces of roughly 46,000 vehicles travelling through central Italy over a month. For each tracked person, they compared the overall distance travelled to their recurrent mobility, obtained by looking at their most visited locations. The researchers found that the mobility behaviour of a subset of individuals, the explorers, could not be approximated by their recurrent trips, as opposed to the well-defined patterns of the returners. Since existing mobility models could not account for this difference, the research team developed a new model to reproduce their findings through simulated travel patterns.

Explorers, by virtue of their non-recurring mobility, were found to influence the potential spread of epidemics. For example, simulated global mobility networks for the population of Tuscany show that, as the proportion of explorers increases, the chances of a widespread epidemic also increase. This suggests that improved understanding and modelling of human mobility have the potential to help predict the future spread of disease.

DOI:10.1038/ncomms9166 | Original article

Research highlights

PrivacyMark System