Neuroscience: Using neural prostheses to restore limb function to immobilised primates
Nature Communications
February 19, 2014
Neural devices can be used to decode brain activity from an alert monkey to produce target-directed movements in a temporarily paralysed monkey reports a study in Nature Communications this week. The findings act as a proof of concept for the use of such systems in rehabilitation of injury after paralysis.
Brain-machine interfaces are currently being investigated for their potential in restoring motor control in disabled subjects. While previous studies have demonstrated that this possibility may soon become a reality, current approaches are limited by the lack of naturalistic movements that the subject can exert with the affected limb. To address this limitation, Ziv Williams and colleagues develop a brain to spinal cord prosthesis that connects two primates. This approach is in contrast to previous studies that use devices to connect subjects solely to computer interfaces. The brain activity in the first primate is computationally decoded and relayed to the spinal cord and muscles of a second sedated primate. The authors report that this second monkey then makes successful movements towards a target based on the neural signals sent from the first monkey.
While it is too early to say if these results are better than any current approaches that use brain-machine interfaces, the authors hope that these findings will facilitate more refined approaches that result in faster recovery and restoration of function after debilitating injury.
doi: 10.1038/ncomms4237
Research highlights
-
Jun 24
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 17
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
Jun 17
Conservation: Feral cats pushing critically endangered marsupial further towards extinctionScientific Reports
-
Jun 16
Microbiology: DNA analysis indicates origins of the Black DeathNature