New targets for anti-parasitic drugs
Nature Neuroscience
November 11, 2013
The mechanism by which the compound betaine, an anti-parasitic agent found in seaweed, works as a pesticide against nematode worms is reported in a paper published this week in Nature Neuroscience. By uncovering a mechanism of action for betaine, this study could help provide leads for the development of new molecules to overcome the increasing prevalence of multidrug resistance in parasitic worms.
Early farmers used seaweed as a natural pesticide to protect plants and livestock but the reason why seaweed was an effective pesticide was unclear. More recently, studies have shown that betaine—which is present in seaweed—arrests nematode larval development, but the molecular target and pathway for its effect still remained unknown.
Aude Peden and colleagues exposed nematode worms to betaine and identified mutations in two separate worm proteins that modulated the effect of this compound. One of these proteins was SNF-3, a molecule that transports betaine in and out of cells. When SNF-3 was mutated, worms hypercontracted and became paralyzed, possibly because of a failure in betaine clearance. Mutations in the other protein, a betaine receptor called ACR-23, made the worms impervious to the toxic effects of betaine and even prevented paralysis in the SNF-3 mutant worms. ACR-23 was expressed in neurons stimulating locomotion, which explained why normal activation of ACR-23 by betaine led worms to become hypercontracted, paralyzed and to eventually die. The authors thus identify a possible mechanism for the anti-parasitic effects of betaine.
doi: 10.1038/nn.3575
Research highlights
-
Jun 24
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 17
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
Jun 17
Conservation: Feral cats pushing critically endangered marsupial further towards extinctionScientific Reports
-
Jun 16
Microbiology: DNA analysis indicates origins of the Black DeathNature