Losing weight without too much energy
Nature Medicine
September 21, 2009
A pathway for how insulin signaling in the mouse hypothamalus ― a region of the brain known to control food intake ― is involved in obesity is presented in this week's Nature Medicine. The findings could lead to a new therapeutic model for obesity intervention and weight loss treatment.
In struggling with weight gain, one approach is to eat less food. However, reducing food intake leads to a natural decrease in the amount of energy used, and this consequently contributes to a relapse of obesity. Various hormones, such as insulin, play a key regulatory role in the process of food intake and energy expenditure.
Insulin is known to inhibit food intake through FoxO1, a transcription factor, in hypothalamic neurons. Domenico Accili and colleagues observed that by significantly reducing the amount of FoxO1 in the hypothalamus, mice would reduce their food intake without also decreasing their energy use. They also show that FoxO1 in the hypothalamus inversely impacts the local concentration of Cpe, an enzyme that is required for the proper maturation of key hormones that also regulate food intake. An independent experiment where Cpe was over-expressed showed that this enzyme protected mice from weight gain without changing energy use, confirming the relationship between FoxO1 and Cpe.
The separation of food intake from energy spending allows for new therapeutic possibilities in obesity.
doi: 10.1038/nm.2026
Research highlights
-
Jun 24
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 17
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
Jun 17
Conservation: Feral cats pushing critically endangered marsupial further towards extinctionScientific Reports
-
Jun 16
Microbiology: DNA analysis indicates origins of the Black DeathNature