Sugar templates for vascular tissues
Nature Materials
July 2, 2012
A rapid and general moulding strategy that uses carbohydrate glass as a sacrificial template for the formation of vascular networks in engineered tissues is reported online this week in Nature Materials. The approach may enable the scaling up of engineered tissue scaffolds that maintain their function at physiological densities, and that may be used as therapeutic replacements.
Without vascular networks that can deliver nutrients and oxygen and remove metabolic byproducts, tissues quickly develop a necrotic core that suppresses their function. But constructing perfusable three-dimensional vascular tissues in the laboratory has only been possible through slow and complex procedures that are usually restricted in the types of materials and cells that can be used.
Using a mixture of glucose and sucrose, and taking advantage of three-dimensional printing, Christopher Chen and colleagues made a network of glass filaments and encased it with a suspension of living cells in their extracellular matrix. After crosslinking the matrix, the researchers dissolved the filaments in cell media. The filaments flowed out of the network leaving behind channels that could be perfused with blood within minutes.
The researchers also demonstrate that the approach is compatible with many types of cells, extracellular matrices and crosslinking strategies, and that it allows for independent control of the network geometry and cell type, both in the lining of the vascular channels and between them.
doi: 10.1038/nmat3357
Research highlights
-
Jun 24
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 17
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
Jun 17
Conservation: Feral cats pushing critically endangered marsupial further towards extinctionScientific Reports
-
Jun 16
Microbiology: DNA analysis indicates origins of the Black DeathNature