Understanding the genetic basis of prostate cancer
Nature Genetics
May 21, 2012
Genetic mutations in prostate cancer, the second most common cancer in men, are reported in two independent studies published inNature and Nature Genetics this week. The findings provide information that may help us to understand how specific genetic landscapes underlie disease progression and response to therapy. Both studies used a technique called exome sequencing (selective sequencing of the coding regions of the genome) to identify these mutations.
Levi Garraway and colleagues report in Nature Genetics the exome sequencing of 112 prostate cancer tumour and matched normal samples. They identify recurrent mutations in multiple genes in prostate cancer. The SPOP gene contained the most frequent recurrent mutations, present in 6-15% of tumours, and may define a new subtype of prostate cancers.
In theNature paper, Arul Chinnaiyan and co-workers analyse autopsy samples from 61 patients with treated and non-treated metastatic castration-resistant prostate cancer to investigate the role of mutations in this lethal disease subtype. Progression to this subtype occurs following heavy treatment with androgen deprivation therapy — ‘chemical castration’ — which reduces the effects of androgen hormones, on which many prostate cancers depend. The authors find a small number of mutations including in the genes affecting androgen receptors. The newly identified mutations reveal a novel mechanism that underlies deregulation of androgen signalling in prostate cancer. This is turn identifies a potential resistance mechanism to anti-androgen therapies.
doi: 10.1038/ng.2279
Research highlights
-
Jun 24
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 17
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
Jun 17
Conservation: Feral cats pushing critically endangered marsupial further towards extinctionScientific Reports
-
Jun 16
Microbiology: DNA analysis indicates origins of the Black DeathNature