Genetic changes in cultured ES cells
Nature Biotechnology
November 28, 2011
The largest study to date on the genetic stability of cultured human embryonic stem cells (hESCs) is published this week in Nature Biotechnology. The analysis of 125 ethnically diverse hESC lines originating from 38 laboratories around the world sheds light on the question of whether genetic mutations in the cells are related to the nature of the cells themselves or to the techniques used to grow them in culture. HESCs show promise for cell therapy because in principle they can be converted into any cell type in the body and because they are able to grow and divide indefinitely in the laboratory. But during long-term culture, the cells can acquire genetic mutations, and some of these mutations could compromise the cells’ utility for regenerative medicine. It is believed that mutations that arise and endure over long-term culture provide a selective advantage for the cells, such as a greater propensity for self renewal. Peter W Andrews and colleagues at the International Stem Cell Initiative carried out genetic analysis of a broad range of hESC lines at early and late stages of culture. Although most of the mutations they identified seemed to occur randomly, about 20% of the cell lines acquired amplifications of a specific region in chromosome 20. This region contains three genes, and one of them, BCL2L1, proved to be a strong candidate for driving hESC culture adaptation. The data generated in this study will be useful for understanding the frequency and types of genetic changes affecting cultured hESCs, an important issue in evaluating the cells for potential therapeutic applications.
doi: 10.1038/nbt.2051
Research highlights
-
Jun 24
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 17
Conservation: Feral cats pushing critically endangered marsupial further towards extinctionScientific Reports
-
Jun 17
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
Jun 16
Microbiology: DNA analysis indicates origins of the Black DeathNature