Neuroscience: The mechanics of sleep
Nature
June 14, 2018
Protein phosphorylation levels in the brain may drive the desire for sleep, a study published online in Nature this week suggests. The research sheds light on the molecular basis of sleep need and highlights potential molecular targets for sleep-related therapeutics.
In mammals, the sleep-wake cycle is driven by a homeostatic mechanism that balances sleep-need with sleep-taken. Qinghua Liu and colleagues studied brain protein phosphorylation levels in sleep-deprived and Sleepy mutant mouse models and found that overall phosphorylation levels were linked with sleep need. Sleep lowered phosphorylation levels, whereas prolonged wakefulness caused hyper-phosphorylation and high sleep need.
The authors identified 80 mostly synaptic proteins whose phosphorylation state changed according to sleep need. This is intriguing because synaptic plasticity has also been implicated in sleep. According to the synaptic homeostasis hypothesis, sleep gives synapses a chance to recover from their daily activity and so maintain homeostasis. Phosphorylation of synaptic proteins may therefore have a central role in maintaining both synaptic and sleep-wake homeostasis.
doi: 10.1038/s41586-018-0218-8
Research highlights
-
Jun 24
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
Jun 24
Sport science: New wearable sensor to measure neck strain may detect potential concussionScientific Reports
-
Jun 23
Scientific community: Women credited less than men in scientific paper authorshipNature
-
Jun 17
Health technology: New cost-effective smartphone test for middle ear functionCommunications Medicine
-
Jun 17
Conservation: Feral cats pushing critically endangered marsupial further towards extinctionScientific Reports
-
Jun 16
Microbiology: DNA analysis indicates origins of the Black DeathNature