Planetary science: Life under a hydrogen atmosphere
Nature Astronomy
May 5, 2020

Microorganisms can survive and grow in a 100% hydrogen atmosphere, according to a paper published in Nature Astronomy this week. The findings suggest life could potentially thrive in a much broader variety of exoplanetary environments than is usually considered.
Rocky exoplanets more massive than Earth, can retain a significant amount of hydrogen in their atmosphere. Such hydrogen-rich atmospheres are likely to be more extended than Earth-like ones, making the exoplanet atmospheres easier to detect. High abundances of hydrogen are not usually considered conducive to life, but research on the viability of life in these environments is lacking.
Sara Seager and colleagues conducted laboratory-based growth experiments on Escherichia coli and yeast, which are representative of prokaryote and eukaryote microorganisms, respectively. The authors exposed cultures of E. coli and yeast to a 100% hydrogen atmosphere. They found that both organisms could reproduce normally, albeit at lower rates than in air. E. coli reproduced around two times slower, while yeast was around 2.5 times slower, which was due to the lack of oxygen, the authors argue.
Microorganisms like E. coli produce a great variety of gases, including potential biosignature gases, which could build up in sizeable abundances and eventually become detectable.
doi: 10.1038/s41550-020-1069-4
Research highlights
-
Jan 15
Environment: Seagrass meadows may facilitate marine plastic removal from the seaScientific Reports
-
Jan 15
Planetary Science: Mercury may have shrunk less than previously thoughtCommunications Earth&Environment
-
Jan 13
Environment: Polyester fibres found to be widespread in the ArcticNature Communications
-
Dec 23
Planetary science: Over 100,000 new craters identified on the MoonNature Communications
-
Dec 22
Conservation: Agricultural expansion could cause widespread biodiversity declines by 2050Nature Sustainability
-
Dec 18
Geology: Alpine summits may have been ice-free during life of Tyrolean IcemanScientific Reports