Bio-inspired bond-breaking
Nature Chemistry
March 30, 2009
A newly created iron compound can be used to rapidly break strong carbon-hydrogen bonds within molecules, up to 1,000 times faster than previous methods. The research, published online in Nature Chemistry this week, could solve what has been a great challenge for chemists, and is particularly important in the industrial conversion of petroleum from its constituent compounds into more valuable products. Copying nature in this way also adds to the understanding of how enzyme active-sites work.
Larry Que and co-workers took their inspiration from the enzyme that performs this task in nature, which, although not yet fully understood, is believed to contain two iron atoms bridged by two oxygen atoms. Although two other similarly oxygen-bridged iron compounds have been made in the past, neither performs very effectively. The new compound has ligands that grab onto the iron atoms with four nitrogen-prongs and, in a first for iron complexes, can also attack strong oxygen?hydrogen bonds in small alcohol molecules.
doi: 10.1038/nchem.162
Research highlights
-
May 12
Geoscience: Monitoring earthquakes at the speed of lightNature
-
May 4
Microbiology: Bacteriophage therapy helps treat multi-drug resistant infection in an immunocompromised patientNature Communications
-
Apr 27
Planetary science: Building blocks of DNA detected in meteoritesNature Communications
-
Apr 8
Health: Psilocybin use associated with lower risk of opioid addictionScientific Reports
-
Apr 5
Energy: Winterizing the Texan energy infrastructure pays off in the long termNature Energy
-
Mar 17
Neuroscience: Sample size matters in studies linking brain scans to behaviourNature