Materials: Bio-inspired super-elastic graphene
Nature Communications
December 5, 2012
A strategy for making three-dimensional graphene networks is reported in Nature Communications this week. These graphene ‘monoliths’ exhibit ultralow density, super-elasticity with an extremely high recovery rate, and electrical conductivity and they may pave the way for new types of graphene-based flexible devices.
The development of graphene as a functional material requires that multiple sheets can be assembled while maintaining the unique properties of single sheets. Dan Li and his colleagues use a combination of graphene chemistry and ice physics to freeze cast the graphene monoliths, which have a structure similar to that of natural cork. The new material can support more than 50,000 times its own weight and can recover from 80% compression.
The authors suggest that functional materials can be incorporated into the voids in the material, offering plenty of room to fabricate new graphene-based nanocomposites.
doi: 10.1038/ncomms2251
Research highlights
-
May 12
Geoscience: Monitoring earthquakes at the speed of lightNature
-
May 4
Microbiology: Bacteriophage therapy helps treat multi-drug resistant infection in an immunocompromised patientNature Communications
-
Apr 27
Planetary science: Building blocks of DNA detected in meteoritesNature Communications
-
Apr 8
Health: Psilocybin use associated with lower risk of opioid addictionScientific Reports
-
Apr 5
Energy: Winterizing the Texan energy infrastructure pays off in the long termNature Energy
-
Mar 17
Neuroscience: Sample size matters in studies linking brain scans to behaviourNature