Charging up qubits in diamonds
Nature Communications
March 7, 2012
A method for manipulating the charge of nitrogen vacancy-centres in diamond - which are thought to be important areas in the creation of qubits in quantum computers - is reported in Nature Communications this week. The approach, which relies on the use of electrolytes similar to those used in batteries, is a step towards achieving more practical realizations of quantum computers. Electron spins at nitrogen vacancy-centres in diamond are thought to be promising candidates for qubits in quantum computers. However, their unstable charge states are an obstacle to their successful use in large-scale quantum processors. Jose Garrido and colleagues present a method for manipulating the charge state of nitrogen vacancies using an electrolytic gate electrode. By applying a voltage through the electrolyte, they are able to reliably control the spin state of the centres. Because of their potential as qubits, these results could have important implications for quantum computing.
doi: 10.1038/ncomms1729
Research highlights
-
May 12
Geoscience: Monitoring earthquakes at the speed of lightNature
-
May 4
Microbiology: Bacteriophage therapy helps treat multi-drug resistant infection in an immunocompromised patientNature Communications
-
Apr 27
Planetary science: Building blocks of DNA detected in meteoritesNature Communications
-
Apr 8
Health: Psilocybin use associated with lower risk of opioid addictionScientific Reports
-
Apr 5
Energy: Winterizing the Texan energy infrastructure pays off in the long termNature Energy
-
Mar 17
Neuroscience: Sample size matters in studies linking brain scans to behaviourNature