RNA microsponges for efficient gene silencing
Nature Materials
February 27, 2012
Microsponges that act as both carrier and cargo for the delivery of gene-silencing RNA (siRNA) into cells are described online this week in Nature Materials. The work reports that, compared with conventional siRNA delivery vehicles, one thousand times lower concentration of the microsponges achieves the same degree of gene-silencing effect in tumour-carrying mice. siRNA delivery has so far been hampered by carriers that inefficiently encapsulate RNA, and by its degradation prior to cellular uptake. Using RNA-amplification techniques, Paula Hammond and colleagues made very long chains of connected hairpin RNA strands from circular DNA templates. They observed that the chains self-assembled into sponge-like microspheres of pleated crystalline sheets. Because hairpin RNA is cleaved to form siRNA only inside the cell, the hairpin-RNA microsponges function both as a stable cargo and a carrier. To enhance cellular uptake, the authors made the microsponges ten times smaller by coating them with a highly charged polymer. They show that each polymer-coated microsponge delivers over half a million copies of siRNA per cell.
doi: 10.1038/nmat3253
Research highlights
-
May 12
Geoscience: Monitoring earthquakes at the speed of lightNature
-
May 4
Microbiology: Bacteriophage therapy helps treat multi-drug resistant infection in an immunocompromised patientNature Communications
-
Apr 27
Planetary science: Building blocks of DNA detected in meteoritesNature Communications
-
Apr 8
Health: Psilocybin use associated with lower risk of opioid addictionScientific Reports
-
Apr 5
Energy: Winterizing the Texan energy infrastructure pays off in the long termNature Energy
-
Mar 17
Neuroscience: Sample size matters in studies linking brain scans to behaviourNature