Accessing antibiotics
Nature Chemical Biology
October 10, 2011
Understanding how bacteria synthesize common antibiotics has led to the engineered creation of an even more potent compound, reports Nature Chemical Biology online this week. The ability to manipulate this bacterial pathway should provide new options in the fight against bacteria.
The antibiotic kanamycin is commonly used in the lab as a generic reporter on the successful insertion of a new gene into a bacterium. Despite its prevalence, and the existence of several related natural products as clues to the natural synthetic process, the way in which bacteria make this compound has remained unclear.
Now Jae Kyung Sohng, Yeo Joon Yoon and colleagues report genetic and biochemical evidence that elucidate the entire biosynthetic path to this compound. Surprisingly, they find that the kanamycin family of compounds is made using two parallel pathways that are controlled by a single enzyme. By replacing this key enzyme or inserting others at the end of the path, the authors are able to alter the compound’s structure, creating bacterial routes to the clinically valuable compounds tobramycin and amikacin. They found that one engineered compound, 1-N-AHBA-kanamycin X, even showed greater activity than amikacin, suggesting that it might be an important tool in preventing bacterial infection.
doi: 10.1038/nchembio.671
Research highlights
-
May 12
Geoscience: Monitoring earthquakes at the speed of lightNature
-
May 4
Microbiology: Bacteriophage therapy helps treat multi-drug resistant infection in an immunocompromised patientNature Communications
-
Apr 27
Planetary science: Building blocks of DNA detected in meteoritesNature Communications
-
Apr 8
Health: Psilocybin use associated with lower risk of opioid addictionScientific Reports
-
Apr 5
Energy: Winterizing the Texan energy infrastructure pays off in the long termNature Energy
-
Mar 17
Neuroscience: Sample size matters in studies linking brain scans to behaviourNature